От RLHF к DPO и дальше: как мы разучились бояться и полюбили выравнивание LLM
В 2022 году существовал ровно один способ сделать языковую модель «хорошей» — RLHF. Один. Если вы хотели, чтобы ваша LLM отвечала адекватно и хотя бы делала вид, что понимает вопрос, — вам нужны были армия аннотаторов и бюджет уровня OpenAI.
Четыре года спустя у нас зоопарк из десятка методов выравнивания, половину из которых можно запустить на одной RTX 4090 за выходные. DPO убрал reward model. SimPO убрал reference model. GRPO и DeepSeek R1 доказали, что RL жив — но в новой форме. Anthropic...